7^2^x^2^-x=1/7

Simple and best practice solution for 7^2^x^2^-x=1/7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7^2^x^2^-x=1/7 equation:



7^2^x^2^-x=1/7
We move all terms to the left:
7^2^x^2^-x-(1/7)=0
We add all the numbers together, and all the variables
7^2^x^2^-x-(+1/7)=0
We add all the numbers together, and all the variables
-1x+7^2^x^2^-(+1/7)=0
We get rid of parentheses
-1x+7^2^x^2^-1/7=0
We multiply all the terms by the denominator
-1x*7+7^2^x^2^*7-1=0
Wy multiply elements
49x^2-7x-1=0
a = 49; b = -7; c = -1;
Δ = b2-4ac
Δ = -72-4·49·(-1)
Δ = 245
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{245}=\sqrt{49*5}=\sqrt{49}*\sqrt{5}=7\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7\sqrt{5}}{2*49}=\frac{7-7\sqrt{5}}{98} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7\sqrt{5}}{2*49}=\frac{7+7\sqrt{5}}{98} $

See similar equations:

| 3(3x-2)-6=15 | | 3(k-2)=1 | | 3(k-2=1 | | 7^x-2.7^1^-x-5=0 | | x=-2/2.1=-1 | | (6x+1)/5=x | | 4^x-15.2^x+56=0 | | 4x-28=2(4x+4) | | x8+-x7+2x6=0 | | -5a+5a=9=8 | | -24=2(x-3) | | 4x+21=3(x+5) | | 5x+50=65 | | 28=7z-7 | | 5(x+2)+40=65 | | 6*x+3=0 | | 11=4z-9 | | 14x-17=6x+7 | | 16=5b+6 | | 9X-5=3•(x-2)+13 | | 3(2x-1)=2x-3 | | x-x+68=180 | | x-x-68=180 | | 3÷(x-1)=6÷(5x-1) | | (50*50)/20=(x*50)/40 | | (100*1)/25=(y*1)/50 | | 3÷2+1÷2x=2x | | 3x-3+2x-7=180 | | .75x=7.5 | | -5=6b-5 | | 2/5n+7=2 | | 26=2+6g |

Equations solver categories